Sell-side analyst visit
Copper
30 September 2014
Forward looking statements

This document contains statements that are, or may be deemed to be, “forward looking statements” which are prospective in nature. These forward looking statements may be identified by the use of forward looking terminology, or the negative thereof such as "plans", "expects" or "does not expect", "is expected", "continues", "assumes", "is subject to", "budget", "scheduled", "estimates", "aims", "forecasts", "risks", "intends", "positioned", "predicts", "anticipates" or "does not anticipate", or "believes", or variations of such words or comparable terminology and phrases or statements that certain actions, events or results "may", "could", "should", "shall", "would", "might" or "will" be taken, occur or be achieved. Such statements are qualified in their entirety by the inherent risks and uncertainties surrounding future expectations. Forward-looking statements are not based on historical facts, but rather on current predictions, expectations, beliefs, opinions, plans, objectives, goals, intentions and projections about future events, results of operations, prospects, financial condition and discussions of strategy.

By their nature, forward looking statements involve known and unknown risks and uncertainties, many of which are beyond Glencore’s control. Forward looking statements are not guarantees of future performance and may and often do differ materially from actual results. Important factors that could cause these uncertainties include, but are not limited to, those discussed under “Principal risks and uncertainties” of Glencore’s Annual Report 2013 and “Risks and uncertainties” in Glencore’s 2014 Half-Year Report.

Neither Glencore nor any of its associates or directors, officers or advisers, provides any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward-looking statements in this document will actually occur. You are cautioned not to place undue reliance on these forward-looking statements which only speak as of the date of this document. Other than in accordance with its legal or regulatory obligations (including under the UK Listing Rules and the Disclosure and Transparency Rules of the Financial Conduct Authority and the Rules Governing the Listing of Securities on the Stock Exchange of Hong Kong Limited and the Listing Requirements of the Johannesburg Stock Exchange Limited), Glencore is not under any obligation and Glencore and its affiliates expressly disclaim any intention, obligation or undertaking to update or revise any forward looking statements, whether as a result of new information, future events or otherwise. This document shall not, under any circumstances, create any implication that there has been no change in the business or affairs of Glencore since the date of this document or that the information contained herein is correct as at any time subsequent to its date.

No statement in this document is intended as a profit forecast or a profit estimate and no statement in this document should be interpreted to mean that earnings per Glencore share for the current or future financial years would necessarily match or exceed the historical published earnings per Glencore share.

This document does not constitute or form part of any offer or invitation to sell or issue, or any solicitation of any offer to purchase or subscribe for any securities. The making of this document does not constitute a recommendation regarding any securities.
Agenda

• Welcome – Senior Management Team
 • Who we are and introducing our Senior Management Team

• Telis Mistakidis – Head of Copper
 • Global and Australian copper update

• Mike Westerman – Chief Operating Officer Copper Assets North Queensland
 • Ernest Henry Underground Mine
 • Mount Isa Copper Operations

• Deon Van Der Mescht – Chief Executive Officer CSA Mine
 • Cobar: future growth options

• Questions
Glencore global copper
Copper overview

Third largest global mined copper producer
- 2013 mined pro-forma production of 1,497kt

Largest trader of copper concentrate and metal
- 2013 marketed volumes exceeded 2.8Mt copper units (in both concentrates and metal)

Source: Glencore, company reports.
Glencore copper assets

Industrial assets comprise: 14 mines, 6 smelters, 5 refineries and 14 EW circuits, assets in 36 countries, marketing offices spread across five continents.
Copper asset portfolio optimised

- c.$300M industrial merger synergies and other cost savings by end 2014
- Q1 first quartile cost positions for industrial assets on track for end 2015
- $7.9bn combined Glencore and Xstrata expansionary copper capex since 2009

Post-integration cost efficiencies and focus now ingrained in industrial asset structures

Unit mine costs leveraged lower through expansion of lower-cost volumes by 2015:
- DRC Copper: $1.48/lb
- Collahuasi: $1.75/lb
- Antapaccay: $1.00/lb
- Antamina: $0.47/lb

Note: (1) Excludes Las Bambas.
North Queensland copper assets
Copper Assets North Queensland (NQ) – overview

Copper Assets North Queensland
• 2,584 employees (including contractors)
• Significant contributor to the Queensland economy

Mount Isa Copper Operations
• Two underground copper mines – Enterprise, X41
• Commenced Copper Mining in 1966
• 1800m deep
• Life of Mine to 2020; reserves of 40Mt @ 2.43%

Ernest Henry Mining Pty Ltd
• Original Open pit – closed 2011
• Underground mining commenced 2009
• Life of Mine 2026; reserves of 74Mt @ 1.04% Cu, 0.53g/t Au

Copper Smelter
• 900kdmtpa capacity
• Scheduled closure in 2016

Refinery
• 300ktpa capacity
2013 NQ transformation

- At time of acquisition (May 2013), the NQ copper business was forecast to generate a negative full year cash flow

- Key decisions and actions taken to achieve a positive cash flow outcome:
 - Removal of negative margin revenue streams
 » Magnetite operations
 » Mount Margaret open pits
 - Review of sustaining and expansionary capital expenditure
 - Simplification of management structure to align with value delivery

- In 2013, NQ copper assets delivered a positive free cash flow, achieving a 7 month turnaround
NQ transformation – consolidation of assets along the value chain

Mount Isa Mine

Copper ore sourced from Mount Isa → Copper concentrator → Copper smelter → Copper anode → Townsville copper refinery (cathode) → Glencore Port Operations

Ernest Henry Mining

Copper ore sourced from Ernest Henry → Copper concentrator
NQ transformation – streamlining management structure

• Previous management structure very siloed and unconducive to integrated production

• Streamlined structure enables:
 » Effective decision making across three geographical locations
 » Sharing of resources across the NQ copper assets, reducing capital requirements
 » Ability to leverage Glencore expertise in shipping and logistics
 » Standardisation of work practices to maximise value
NQ transformation – reducing the 2013 cost base

Operating Expenditure initiatives
- Management restructure and streamline
- Negative margin operations removed
- Improved productivity
- Renegotiation of contracts

18% Headcount Reduction
- Staged approach to headcount reduction
 - Production profiles sustained
 - No impact on safety
 - Focus on Contractor reduction
- Rationalisation of support services and duplication
- Consolidation of Business on site

Capital Expenditure initiatives
- Low probability study work terminated
- Marginal investment cases abandoned
- Gold plated solutions removed

3% reduction in operating costs

30% reduction in sustaining capital expenditure
25% reduction in expansionary capital expenditure
EHM – transition to a long life, low cost underground producer

- From 1995 to 2011 successful open pit
- Innovative Sub level caving utilised to achieve viable low cost, low grade ore operation
- $589M brownfield project approved in December 2009 to convert from underground trucking operation
- Develops to over 1,000m below the surface and 475m below the open pit
- Extends life of mine to 2026
- Hoisting commenced end of May 2014
- Production rates ramp up to 6.0Mtpa in 2015, exceeding feasibility expectations
EHM – underground mining flowsheet

Sub Level Cave
- Caving initiated
- Transfer Automation
- Resources and Reserves
- Ore Passes

Crushing System
- Transfer Level Automation
- Crusher operation

Transfer System
- Feeders
- Trunk Conveyor
- Automation

Hoisting System
- Loading Station
- Winder System
- Surface System
- Feeders
- Conveyor

Other
- Ventilation system
- In Pit Dewatering
- Underground Dewatering
EHM – major project infrastructure

- 600m overland conveyor
- Underground primary crusher
- Underground surge bin
- Loading station
EHM – concentrator

Background

• Historically utilised as a single-line single-ore concentrator
• Evolution of the plant enabled processing of additional feed sources, including low-grade ores, smelter slag, and 3rd party ores

2014 YTD operational improvements

• Opportunity to introduce low-milling rate operational strategy, improving grind size and overall recoveries:
 » Cu recovery improved 0.3% post change
 » Au recovery improved 2.9% post change
• Utilisation of additional plant capacity:
 » Milled tonnes up 4% YTD
 » Unit costs (AUD/t) down 6% YTD
• Asset management strategy remains a core focus:
 » Underlying plant runtime >92%
EHM – unit cost performance and project upside

Current performance in line with expectations
• Early ramp up to 6.0Mt planned for 2015, 12 months ahead of schedule
• Mining unit costs reduced by 50%
• 42% reduction in EHM C1 Unit costs by end of 2015, taking operation from 4th Quartile to 2nd Quartile

Upside emerging
• Cave productivity already above nameplate capacity of 6.0Mtpa
• Ability to enhance grade (by up to 5%) due to Cave draw flow predictability
• Low rate milling strategy delivering higher than expected recoveries
• Leveraging Mount Isa expertise and productivity agenda
EHM – possible mine extension 2025 to 2030

• Orebody currently open at Depth
 • Potential to increase current Resource to below 1200 sub level
 • Explore DD intersections from 1992-94 surface campaign of 42m @ 1.37% Cu
 • Mineralisation adjacent EJ and open at depth and along strike of existing ore domains

• Low grade halo conversion at higher recoveries and higher production rates
EHM – potential for mine extension 2025 to 2030

Footwall Overdraw

- Additional drilling enables recovery of low grade material along footwall of the main sub level cave (SLC)

<table>
<thead>
<tr>
<th></th>
<th>Tonnes (Mt)</th>
<th>Cu (%)</th>
<th>Cu (kt)</th>
<th>Au (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Reserves</td>
<td>74.2</td>
<td>1.04%</td>
<td>772</td>
<td>0.53</td>
</tr>
<tr>
<td>Total Resources</td>
<td>91.0</td>
<td>1.23%</td>
<td>1,124</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Without FW rings
With FW rings

East Extension

- Additional mining to the east of the main SLC
MICO – overview

Mount Isa Copper Mine
- Underground Mining commenced in 1966
- 1,200 km of development drives
- Over 200Mt of ore recovered from mine

X41 Mine
30Mt @ 1.8% Cu

Enterprise Mine
23Mt @ 3% Cu

Remaining Reserve
Depleted Reserve
MICO – overview

- Aged Asset with high grades and very productive infrastructure
- Demonstrated ability to reliably deliver high volumes of copper at robust margins
- Requires focus on operational discipline and management of variability (complexity):
 - Development ~12km primary / 9km rehabilitation per year
 - Large number of active mining areas spread out towards extremities of ore bodies
 - Labour and equipment intensive
 - Mobile fleet comprising 10 Jumbos, 3 cable bolters, 6 production drills, 11 trucks, 15 loaders
MICO – operational discipline achieving results: mobile equipment

Truck utilisation trend

- Disciplined tracking of idle, standby and delay times enabling significant utilisation improvement
- Increased utilisation of truck and loader fleet allows for absorption of additional tkms as transfer approaches 2.5 rehandle ratio
- Underground shift changes remain key idle time driver, with mine firings, distance to work area and mine complexity significant contributors
MICO – operational discipline achieving results: concentrator

Ore milling rate performance

Concentrator unplanned downtime

Incremental copper recovery improvement

Embedded approach to asset management
- Increased processing volumes
- Improved plant performance
- Reduction in reactive maintenance and contractor demand

Systematic approach to controlling variation
- Mitigate repeat events – sustain the baseline
- Drives continuing incremental improvements
- Devolved accountability and ownership
MICO – future resource potential: underground

<table>
<thead>
<tr>
<th>Target</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3000 remake</td>
<td>~30Mt</td>
</tr>
<tr>
<td>3500 remake</td>
<td>~40Mt</td>
</tr>
<tr>
<td>W Block South</td>
<td>~3.5Mt</td>
</tr>
<tr>
<td>SSW 1100 OB</td>
<td>~10Mt</td>
</tr>
<tr>
<td>Perched HWL</td>
<td>~17Mt</td>
</tr>
<tr>
<td>Buck Quartz Fault</td>
<td>~40Mt</td>
</tr>
<tr>
<td>N650 OB</td>
<td>~17Mt</td>
</tr>
<tr>
<td>SW 1100 OB</td>
<td>~4Mt</td>
</tr>
<tr>
<td>HWL Basement</td>
<td>~17Mt</td>
</tr>
<tr>
<td>BQF Perched (Current)</td>
<td>~40Mt</td>
</tr>
<tr>
<td>S3500/W-block</td>
<td>~3.5Mt</td>
</tr>
<tr>
<td>Blind East 3500</td>
<td>~1.5Mt</td>
</tr>
<tr>
<td>North 3000 Remake</td>
<td>~32Mt</td>
</tr>
<tr>
<td>SSW 1100 OB</td>
<td>~10Mt</td>
</tr>
<tr>
<td>R62 SHAFT</td>
<td></td>
</tr>
<tr>
<td>U62 SHAFT</td>
<td></td>
</tr>
<tr>
<td>Blind East 3500</td>
<td>~1.5Mt</td>
</tr>
<tr>
<td>North 3500 Remake</td>
<td>~43Mt</td>
</tr>
<tr>
<td>650 OB</td>
<td></td>
</tr>
<tr>
<td>Potential target size – 7Mt</td>
<td></td>
</tr>
<tr>
<td>Potential target size – 32Mt</td>
<td></td>
</tr>
</tbody>
</table>
Background

• Progression of several open pit studies completed since the 1970’s, hampered by infrastructure and metallurgy challenges

• The BROC cutback addresses these challenges:
 » Pit has been optimised on Copper ore types only
 » Designed not to interfere with high replacement cost infrastructure
 » Metallurgical test work programs producing promising results on treatability of BROC ores

Potential

• Extension of current pit depth to 225m and 600m from N – S

• 50m nominal standoff from infrastructure restricts pit boundary

• Total Strip ratio of 5.4 (or 4.0 inclusive of Pb/Zn Ore)
Copper smelter and refinery
Mount Isa Copper Smelter - overview

2014 Copper smelter
- 200 employees
- 22 FTE contractors
- 900 kdtmtpa Concentrate capacity
- 97.5% recovery
- Acid plant owned and operated by Incitec Pivot

Copper Smelter Equipment
- 35kwmt concentrate storage capacity
- Isasmelt Vessel
- 2 x Rotary Holding Furnace
- 4 x Piece smith Converters
- 2 x Anode Furnaces
- 1 x Anode Wheel (80t/hr)

Auxiliary equipment
- ESP Leach Plant (4 tph capacity)
- Converter Slag/Reverts Crushing Plant (60tph capacity)
- CRL electrolyte recovery process
Mount Isa Copper Smelter

Asset Management
• Smelter outage June 2014
 » Refractory replacement across 4 vessels
 » Significant overhaul of primary smelter off-gas treatment system
• Converter hood replacement program in progress to sustain SO₂ capture through to closure
• Strong, integrated IPL/MIM planning process achieved 24% improvement in off-gas treatment in 2014

Outlook
• Isasmelt refractory capable of 4+ years
• Scheduled for closure - December 2016
• Personnel retention process in place through to smelter closure
• Treatment of third party concentrate
Townsville Copper Refinery

CRL Operations
- Cathode annual production target 288,500t
- Slimes annual production target approx. 900t
- Cathode registered on LME and SHFE

Tankhouse Parameters
- ISA Process Technology
- 37 sections, 3 operating circuits, 1162 operating cells
- 2 crop cathode cycle, 8 day crop 1, 10 day crop 2

<table>
<thead>
<tr>
<th>Anode Weight</th>
<th>350kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode Weight</td>
<td>75kg</td>
</tr>
<tr>
<td>Anodes per cell</td>
<td>45/44</td>
</tr>
<tr>
<td>Anode Scrap Rate</td>
<td>17.8%</td>
</tr>
<tr>
<td>Current Efficiency</td>
<td>95.5%</td>
</tr>
<tr>
<td>Time Efficiency</td>
<td>96.0%</td>
</tr>
<tr>
<td>Current Density</td>
<td>326 amps/sqm</td>
</tr>
<tr>
<td>Cell Current</td>
<td>26,500 amps</td>
</tr>
<tr>
<td>Kunz Cranes</td>
<td>2</td>
</tr>
</tbody>
</table>
Townsville Port Operations

Facility
• All weather berth
• 3 storage sheds, total capacity of 160kt
• Dedicated rail loop and tippler

Environmental Authority Approvals
• Concentrates (Zn, Cu, magnetite, revert and dross) – 3.86MTPa
• Lead concentrate – 140kTPa
• Fertiliser – 1.2MTPa

Relocation Project to Berth 8
• $86 million investment (jointly funded) to relocate to a new berth
• Offers:
 » 2.5 times more shiploading capacity
 » Greater berth efficiency
 » Significant improvements in environmental performance
Third-party processing

• Currently progressing options on tolling both copper ore and concentrates through the EHM and Mount Isa concentrators and smelter to supplement own sources.
 » *Allowing local mines to leverage our existing asset base for processing copper ores and concentrates*
 » *Smelter value-add to copper product stream through removal of logistic constraints and delays*
 » *Established logistics chain to market*
CSA Mine – historical overview

- Discovered in 1871
- Current operation began in 1967
- Initially produced Cu/Ag/Zn/Pb – now Cu/Ag only
- Acquired by Glencore in 1999 ending a year long shut down
- 25Mt of ore extracted to date
- Highest grade copper mine in Australia
CSA Mine – today

- High grade asset with aged infrastructure
- Amongst the three deepest mines in Australia – currently 1,640m below surface
- Producing 1.1Mtpa of copper/silver ore (4.6% Cu, 15.2g/t Ag)
- Producing 162ktpa of copper/silver concentrate (28.5% Cu, 80g/t Ag)
- Concentrate transported by rail from mine to Newcastle – sold to smelters overseas.
- Reserves: 5.8Mt @ 4.4% Cu, 17.3g/t Ag
- Resources: 11.5Mt @ 5.7% Cu (2.7Mt Measured, 3.1Mt Indicated, 5.7Mt Inferred – Dec 2013)
- Current Life of Mine – 10 years
CSA Mine – additional potential cost reduction

Upgrade of current infrastructure
• Ventilation and hoisting capacity to facilitate execution of new infrastructure, replacing trucking at depth
• Majority of current infrastructure upgrades to be completed by end 2015 and allow/facilitate:
 » initiation of new infrastructure establishment
 » increased development of resource, particularly in the new QTS Central ore body

Increase current ore resource to enhance project capital returns
• Potential exists to double current resource within the new QTS Central ore body and the down plunge extent of the QTS North ore body
• Magnitude and success of the ore resource increase will dictate the size of the new infrastructure investment
QTS Central
- Discovered 2014
- Inferred: 1.0 Mt @ 6.1% Cu
- Open at depth

Known anomaly
- @ +5% Cu

Potential
- @ +5% Cu

QTS South Mineral Resource
0.3 Mt @ 7.4% Cu (22 Kt Cu)

QTS North Mineral Resource
8.9 Mt @ 5.9% Cu (525 Kt Cu)

Remaining Western & Eastern Resources
2.2 Mt @ 4.4% Cu (97 Kt Cu)

Potentially
- @ +5% Cu

Historic Western & Eastern System Workings

Shaft base 1.1 km below surface

No. 2

No. 1

Depleted

Measured Resource

Decline base 1.6 km below surface

Indicated Resource

Inferred Resource

Ore body open at depth
(2-3 km below surface)

CSA mine – significant resource growth potential
Conclusion
Summary

The future of our Australian Copper operations is via expanded mining and concentrate production

• We are continuing to invest in our business
• Major projects are progressing in line with targeted expectations
• We have mature assets – efficient mining and processing techniques, improving productivity and lowering costs is critical for our future
• Significant resources and reserves remain for potential future development
• We remain committed to high standards in the areas of health, safety, environment and community